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The spin-up of a homogeneous rotating fluid bounded at the top and/or bottom 
by a permeable medium has been proposed by Bretherton & Spiegel (1968) 
as a model for the spin-up in natural flows where turbulent processes transmit 
the direct effect of the boundaries deeper into the fluid than does the laminar 
Ekman layer. The theoretical analysis for the spin-up of a laterally unbounded 
fluid bounded by a permeable medium below is presented here. In addition, an 
experimental study of the process is presented. Theory and experiment agree 
reasonably well with a maximum difference of about 8 %  in the predicted 
and measured spin-up times. The effects of the side-wall boundary have been 
studied theoretically by Howard (1969). Experimental observations in the side- 
wall boundary layer confirm qualitatively the results of Howard's theory. 

1. Introduction 
Consider a cylinder filled with a fluid and rotating about its axis with uniform 

angular velocity Q - AQ. If at  time t = 0 the angular velocity of the cylinder is 
increased to a, the fluid in the immediate vicinity of the boundary will feel the 
change immediately, but the bulk of the fluid will continue to rotate with 
angular velocity !2 - AQ. The process by which the fluid achieves the new rota- 
tion rate, s;Z, has been described by Greenspan & Howard (1963). This so-called 
spin-up takes place as follows: 

In a period of time of the order of P I ,  Ekman boundary layers at  the top and 
bottom of the cylinder are established. Within these layers, the fluid feels the 
new rotation rate, and is thrown outward by the increased centrifugal force. 
The outgoing fluid in the boundary layer is replaced by a vertical flow of fluid 
into the boundary layers from the interior. This vertical flow is accompanied by 
a radially inward flux of fluid in the interior and, since viscous effects are not 
significant in the interior, the conservation of angular momentum requires that 
the inward flowing particles increase their angular velocity. This secondary flow 
constitutes the spin-up of the interior fluid. 

For a container with rigid boundaries the rapidity of the spin-up process 
depends on the rate at which the Ekman boundary layers suck fluid from the 
interior. If the solid boundaries at the top and bottom of the container are 
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replaced by permeable boundaries, the vertical flux from the interior can be 
increased and, since the permeable medium can impart the new rotation rate to 
the incoming fluid very effectively, the entire process can be speeded up. Brether- 
ton & Spiegel (1968) suggested that in geophysical or astrophysical flows the 
mixed layers near the surface can be simulated by a permeable medium, which 
could enhance the spin-up process. In  his famous paper on wind-driven currents, 
Ekman (1905) assumed an eddy coefficient of viscosity for the surface regions of 
the ocean and thereby incorporated the same effect. 

The present paper treats the spin-up of a fluid bounded above and below by a 
permeable medium. The theoretical analysis is given in $2. We make liberal use 
of the ideas introduced by Greenspan & Howard and described in Greenspan's 
(1968) book. I n  particular, the time scale of the flow is assumed to be of the order 
of the spin-up timc for the problem with solid boundaries. The effect of the per- 
meable medium is introduced by matching the appropriate variables of the free 
fluid to those of the permeable medium, evaluated a t  the boundary interface. 

The resulting spin-up time follows by means of a straightforward analysis, 
and it has the value 

1 + 4N2 
Q (4Nh/L)+2NEg+E* ' 

T = -- " ----I 
where N = k Q / v ,  k is the permeability, v is the kinematic viscosity, E is the 
Ekman number, h is the depth of the permeable medium, and L is the half depth 
of the fluid. As N --f 0,  so that the boundary becomes impermeable, the ordinary 
spin-up time of Greenspan & Howard is recovered, and as N+oo the limiting 
behaviour is the cylindrical counterpart of that deduced by Bretherton & Spiegel 
for a sphere, where the Ekman layers are unimportant. For the geophysical or 
astrophysical situations, in which the permeable medium serves as the analogue 
to the convectively unstable surface layers, the latter extreme is appropriate. 

The experimental arrangement for the observation of the spin-up time is 
straightforward, and is described in $ 3 ,  The spin-up time was determined by 
photographing from above the position of a straight line of dye which was 
generated before the tank was spun up. I n  $ 4 ,  we compare these experimental 
results with the theory. The comparison is quite good, with agreement within 
8 yo for each run. 

In our analysis we omitted the effects of the side-wall boundary layer. These 
effects are the subject of a study by Howard (1969). As described in $5)  we ob- 
served the structure of the azimuthal velocity profile from both the vertical 
and the horizontal, and compared the observations with Howard's theoretical 
results for the lateral boundary layer. Howard analyzed cases where the para- 
meter ,!? = (vT/h2): was large or small. I n  our experiments, we examined flows 
where /3 was small, which implied that the spin-up time T was much less than the 
characteristic diffusion time h2/v, based on the thickness h of the permeable 
medium. 

For small /3, Howard predicts that  in the boundary layer there will be a large 
backward displacement in the azimuthal direction in addition to the backward 
displacement in the interior. The physical reason for this is that the fluid in the 
permeable medium senses the wall a t  a distance from it of the order of the depth, 
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h, begins to slow down, and is forced up into the essentially inviscid interior. 
The result is that the fluid in the interior spins down in this region causing the 
backward displacement. A more detailed description of the physical process 
is presented in $5. We were able to observe the qualitative behaviour predicted 
by Howard, but not the magnitude of the effect. The reason for this is that we 
were not able to generate a flow in which the Stewartson layer of thickness 
LE4 is much thinner than Howard’s boundary layer, a condition which Howard 
assumed in his development. 

There exists a point in the fluid within the side boundary layer, where the final 
position in the vertical direction remains unchanged after spin-up is complete. 
We measured the distance of this point from the side wall, and found it to be in 
reasonably good agreement with Howard’s theory. 

2. Theoretical analysis 
Consider the cylindrical configuration shown in figure 1. Initially the fluid is 

spinning with solid body rotation Q,. Then the cylinder is spun up by an amount 
AQ. After an amount of time, characterized by the spin-up time T, the fluid 

FIGURE 1. The geometrical configuration of the problem. 

reaches solid body rotation at the final value Q = Q,+AQ. As in the ordinary 
spin-up problem, the effects of the side wall can be neglected in determining 
the spin-up time, because the spin-up time will be so much smaller than the diffu- 
sion time. 

There are two flow rdgimes to consider, the free fluid and the flow of the fluid 
in the permeable medium. Solutions of the flow field in each of the regimes can 

15-2 
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be found, and the solutions matched a t  the interface between the fluid and the 
permeable medium. 

Equations describing the free fluid are the Navier-Stokes equations for a 
rotating fluid and the continuity equation. These equations in dimensionless 
form with the velocity V, measured with respect to the final rotation rate Q, are 

F i - e V -  at VV i- 2 f  x V = - V P  i- EV2V, (1) 

v * v  = 0, ( 2 )  
where E (  = AQ/Q) is the Rossby number, E( = v/L2Q) is the Ekman number, and 
f is the unit vector in the z-direction. The centrifugal and gravitational body 
force terms are absorbed in P. For these equations, time is non-dimensionalized 
by Q-l, length by L, velocity by AQL, and pressure by pLQ(Ai2L). 

The equations describing the flow in the permeable medium are Darcy’s lam 
and the continuity equation. 

Darcy’s law in dimensional variables is 

(3)  
k 
P 

V =  --(Vp-F), 

where F is the sum of applied body forces and k is the permeability of the medium. 
From the assumption that the fluid in the permeable medium reaches Q in- 
stantaneously in comparison to the spin-up time, F will consist of thegravitational 
force, and the centrifugal and Coriolis forces due to the rotation Q. 

(4) F = - p a  x (Q x r) -p2Q x V-pg&. 

Equations (3) and (4) can be non-dimensionalized in exactly the same manner 
as described above, which yields Darcy’s law in dimensionless form (Q = kQ): 

v =  -N(VP+2&xV) ,  ( 5 )  

where N = k Q / v  and, as before, the centrifugal and gravity forces are absorbed 
in P. The continuity equation for the permeable medium is the same as (2). 

Since this problem is similar to the ordinary Ekman spin-up problem, we 
will assume some of the characteristic features of that problem to be true for 
this problem. So we will make the following assumptions: 

(i) The Rossby number, E = AQjQ, is taken to be sufficiently small so that 
the problem is linear. 

(ii) The variables in the free fluid can be divided into an interior part (denoted 
by subscript I )  and a boundary layer part (denoted by an overbar). Thus, 

v = v,+v, P = P,+P, (6) 

where v decays to zero in the interior. 
(iii) In the interior, 

because of azimuthal symmetry. In  the boundary layers at  x = 1, 
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(iv) 111 both the interior and the boundary layers, the time scale is of the order 
E-4. Thus, 

( 9 )  
a a a 

~ = E)---- ,  where - = O(1). 
at a7 a7 

With these assumptions, (1) and ( 2 )  for the free fluid take the following form 
for the interior. 

For the bounda.ry layer at  z = - 1 (we consider only the bottom boundary layer, 
since the upper one can be treated in the same fashion): 

where u is the radial velocity, v theazimuthal velocity and w the verticalvelocity. 
To solve t,he above equations, we will assume a series solution in powers of Ei,  

where EA < 1. Thus, 
00 

(VI) V) PI, P )  = c E W I , ,  vn> PIn, Pn). (12) 
n=O 

Then we use (1 2 )  in the sets of (10) and (1 l), and we equate the terms of like 
powers of EB. 

Thus we obtain, for the interior, 
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where uIo vanishes; 

For the boundary layer, we obtain 

All boundary layer quantities must vanish as <-+oo. Thus, from (15a) and 
(15b), Po = Go = 0. Using the fact that w = 0 at x = 0, due to  vertical symmetry, 
and that Wo = 0, we find from (13d) that wIo = 0. 

Now let us assume that the radial and azimuthal velocities have the following 
form in the free fluid and the permeable medium, 

u = rU(x, 7); v = r V(x,  7). (17) 

As in the analysis of Greenspan & Howard (1963), this form of solution works 
because we are neglecting side-wall effects, and have no characteristic radial 
dimension. 

Equations ( 1 3 4  and (13e) imply that V,, is not a function of z. Combining 
(14b) and (14d), and using the assumption of (171, we derive 

Integrating (18) from z = 0 to z = - 1, noting that wI1 = 0 at 2 = 0 because 
w = 0 and Wl = 0 at  x = 0 (which corresponds to 5 = co in the boundary layer), 
yields 

(19) -__ = WI1lO=-l. 
a7 

The Ekman layer equations (16a) and (16b) yield 

(20) 

(21) 

- 
uo = re-CtA(7) cosc+B(~)sinc];  

vo = r e -~ [B(T)cos~-A(~)s in<] ,  - 
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where A(r)  and B(r) are arbitrary functions of r, which must be found from the 
boundary conditions. W1 can be found from (1613): 

(22) 
- w1 = e-%[(A+B)cos<-(A-B)sinLJ. 

The following boundary conditions must be satisfied (subscript p stands for 

a t z =  - 1 ,  
quantities in the permeable medium) : 

at 2 = - 1 - (h/L) ( Z  = - L - h dimensional), 

(B.C. 5 )  W,  = 0. 

For the permeable medium from ( 5 ) ,  

From continuity, 

0, = - 2 N u p ,  

Combining (23) and (24) yields: 

Using (B.c. 1),  (27)  and (13a), we derive: 

and, from (BE. 2)) (29)  and (20)  

- 2N 
u = u~,, + Tiolz=-l = rA = u P - - m z r ~ o .  

Thus, 

Also (B.c. 3) ,  (24),  (29)  and (21)  give 

Thus, 
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Using (29) in ( 2 6 ) ,  we find 
4N v awP = _ _ ~  

a x  1 + 4 N 2  Io' 

Integrating ( 3 2 )  and using (B.c. 5 )  yields 

wz, = ~ 4N v z + l + - -  . 
1 + 4 N 2  I o (  

From (B.c. 4 ) ,  

where wIo and Wo vanish. Using (19), ( 2 2 )  and ( 3 3 ) ,  

w = wI,+w,+Eb(wIl+wl),=_, = ~ ~ l , = - ~ ,  

Substituting for A and R from ( 3 0 )  and (31), 

Solving ( 3 4 )  using the initial condition that V,, = - 1 a t  r = 0 yields 

V,, = -exp (- 1 [" h+ 2N + 11 r )  . 1 + 424- Eg L 

(33) 

(35) 

- rAQ e-t'T, ( 3 6 )  
In dimensional terms, 

wherc T is defined as the spin-up time, 
VUIO = 

(37) 

The effect of the permeable medium is to  decrease the spin-up time as corn- 
pared with ordinary Ekman spin-up. The permeable medium acts somewhat 
as a centrifugal pump, sucking fluid from the interior down into the medium 
and forcing it up the sides of the container. This suction is in addition to the 
Ekman suction, which is still present. 

I n  the experiment described in $ 3 ,  it was more convenient to  use a rigid sur- 
face at  the top boundary, z = 0, and the theory must be modified accordingly. 

From ( 3 7 ) ,  we can see that if the spin-up time due only to the Ekman layer 
(T,) is characterized by Q-lE-4, and the spin-up time due only to  the permeable 
medium (T,) is characterized by [ Q ( ( 4 N h ) / L )  + 2 N E 8 ) l - l  (neglecting the N 2  
term which is negligible in practice), then the total spin-up time T can be found 
by adding T, and Tp as if they were parallel resistances: 

1 1 1  

= T,+T 
It can easily be shown that the effect of the Ekman layer at the rigid top can 

be taken care of in similar fashion by adding in parallel the spin-up time associ- 
ated with it (same as T,). Thus for a cylinder of height L with a pcrmeable medium 
of height h a t  the bottom and a rigid top, 

I T=" 1 
Q ( 4 N h / L )  + 2NE4 + 2E4 . (39) 



Spin-up of a homogeneous fluid 233 

3. The experimental arrangement and the method of observation 
The turntable that was used for the experiments can be rotated at  a uniform 

angular velocity accurate to about 0.1 yo. We used a tank with diameter L) = 1 8-7 
cm with a rigid top. For four of the runs, the depth of the fluid L was 10.45 cm, 
and the height of the permeable medium h was 1.45 cm. For the last two runs, we 
had L = 18-60 ern and h = 1.75 cm. We had tried various types of permeable 
materials and finally settled on close-packed glass spheres of radius R = 0.4 cm, 
because the permeability could be calculated accurately, and the results could 
be reproduced with ease. The theoretical equation of Brinkman (Scheidegger 
1960) for the permeability of spheres packed with a given porosity is 

4 

where P is the porosity. The spheres were packed as close as possible to ensure 
that the porosity was the known minimum of 0.259. Thus, for our experiments, 
E = 0-476 x 10-4 cm2. For the kinematic viscosity of water v we used 0.96 x 
cmz/s. 

For ohserving the flows we used a method described by Baker (1966). A pH 
indicator solution, thymol blue, is used as the fluid. The indicator, blue when 
basic and yellow when acidic, is titrated to the point where it is very slightly 
acidic. Conducting wires are stretched across the diameter of the cylinder at 
different heights, and are connected to a d.c. source. When the wires are pulsed, 
fluid around the positivewire takes on a blue colour, because the solution becomes 
locally basic. The blue line forms a neutrally buoyant marker. 

The sequence of photographs in figure 2,  plate 1, shows this blue line viewed 
from above as the fluid is spun up for a cylinder with solid boundaries. 

Experimental results can be compared to theory by measuring Q, the angle 
between the wire and the line, as a function of time. This can be done bj- taking 
sequences of pictures, as shown in figure 2, plate 1, from a camera mounted on 
the turntable vertically above the cylinder. The theoretical relationship between 
Q and t can be found by integrating ( 3 6 ) ,  which can be written as 

Integrating the above, and using the condition that q5 = 0 a t  t = 0, we have 

Q = TACl(1 -e- t /F) ,  (42) 

where, for a free surface or a rigid top configuration, we use (37) or (39), 
respectively, for the spin-up time. For t -+ co, Q will reach a final value Qf, given 
by Qf = TAQ. (43) 

4. Experimental results and comparison with theory 
In  practice, we sometimes observed deviations from a straight line for the 

measurement of q5. This indicated that different portions of the interior of the 
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fluid were spinning up with slightly different rates. Figure 3, plate 2, shows a 
typical line, The deviation from an exact straight line is probably due to irregu- 
larities in the permeable medium, since repeated experiments with a single 
packing of glass balls reproduced the irregularities in the same locations. An 
average value of q5 could be easily dctermined. 

The average values of 4, determined from experiment, were comparcd with 
theory. Figures 4(a) - ( f )  show this comparison. In  these figures q5 is plotted 
as a function of ect/'' where T is the theoretical value for the spin-up time cal- 
culated from (39). T, and Tp are defined? in the paragraph preceding (38). 
The ratio T'/T: is a measure of the relative influences of the Ekman boundary 
layer and the permeable medium. The former tends to dominate as the ratio 
is increased from unity, the latter dominates as the ratio is decreased from 
unity. This ratio, calculated for our experimental conditions, is shown in table 1.  

-Run L (cm) h (cm) !2 (radis) Asl j s l  T P P V  T (sec) 
I 10.45 1.45 1.10 0.0132 5.78 43.5 
2 10.45 1.45 2.73 0.0133 1.47 19.3 
3 10.45 1.45 3.74 0.0132 0.91 13.1 
4 10.45 1.45 4.85 0.0092 0.61 9.2 
5 18.60 1.75 6.48 0.0304 0.34 9.6 
6 18 . t iO  1.75 8.15 0,0163 0.23 6.4 

TABLE 1. Values of parameters for experiments shown in figures 4-9. 

The comparison of experiment with theory is quite satisfactory, being within 
8 yo of agreement for every case. The difference between theory and experiment 
is greatest ( N 8 yo) for the slowest rotation rate (SZ  = l*lOrad/s) where the Ekman 
layers dominate, and the fastest rate (8.15 rad/s) where the permeable medium 
dominates. For the slow case, the spin-up time is about 40 see, which means the 
time required to reach 99 yo of the final angle is about 3.; min. Thermal effects, 
which are described below, are maximum for this case. Also, since the effects 
of the Ekman layer dominate, the irregularities of the interface between the 
permeable medium and the free fluid are also maximum. For the very fast 
case there seems to be much more unevenness in the line, as shown in figure 8 
in $ 5 .  As described there, there are unusual effects in the side wall boundary 
layer, which may have something to do with this unevenness in the interior. 
With the unevenness it is difficult to  determine the position of the dye line very 
accurately. 

The main sources of experimental error are: (i) slow thermal flows generated 
by the temperature difference between the experimental fluid and the air in the 
laboratory; (ii) viscous drag of the wire on the flow past the wire and (iii) uneven- 
ness in packing of the glass spheres and the consequent (horizontal) spatial 
variation in the permeability. 

Thermal effects were minimized by setting up the experimental arrangement 
several hours before the actual runs, and allowing the system to come to thermal 

t When a rigid top is used T, is given by gsl-lE-*. 
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equilibrium with the room temperature. Also, the water that was used was 
stored in a large bottle in the laboratory, and consequently was essentially in 
thermal equilibrium at the time of use. However, the air temperature fluctuated 
by a degree or two during the course of the day, and the generated temperature 
diffcrciicc crcatcd slow thermal flows, which could be observed when the fluid 
was supposed to be in solid-body rotation. A better arrangement would be to 
use a tank with a false wall for insulation, but this was not done, as the thermal 
effects were not really serious enough to distort the results appreciably. 

The viscous drag of the wire on the fluid, and most particularly on the dyed 
line, created an apparently faster spin-up (by about 3 %) near the centre of the 
tank. This relatively small error can be eliminated by removing the wire after 
the line is generated. 

The unevenness in the packing of the glass spheres cannot really be eliminated 
completely. Considerable care was used in packing the spheres to minimize 
the variation in permeability. I n  any event, an average permeability can be 
determined, and seems to provide enough accuracy for the spin-up time. 

5. Experimental observations of the side-wall boundary layer 
Howard ( 1969) analyzed the side-wall boundary layer theoretically. In  

his analysis he assumed S = h/L, T p / q  and N all to  be small, making the calcula- 
tion as an expansion in powers of S. A significant parameter in the development 
is /3 = ( vT/h2)h a measure of the spin-up time relative to the diffusion time based 
on the scale h. Howard made numerical calculations for large and small p. 

The case with small p is more interesting physically since Howard predicts 
a region near the side boundary, of thickness hpP, in which the fluid spins down. 
Here, the azimuthal velocity of the fluid lags behind that of the fluid closer to 
the centre. Howard assumed that the side-wall boundary layer generated by the 
permeable medium is much thicker than the EB layer. It was not possible for us 
to achievc: his conditions when we used water, because the viscosity of water is 
too large to enable one to  juggle the parameters appropriately. I n  the runs that 
we made Howard’s boundary layer was always thinner than the E i  layer a t  the 
end of a spin-up time. However, the layer of thickness hp? is generated essentially 
instantaneously, whereas the viscous diffusion layer achieves the thickness E: 
at the end of a spin-up time. Hence, the qualitative effects of Howard’s theory 
could be observed, but the flow pattern was affected by the E$ layer during the 
course of the run, and we were unable to reproduce his quantitative results. 

We first observed the boundary layer from the side. There exists a point along 
any radius from the interior to the side wall, where the final vertical displace- 
ment of the fluid particles after the spin-up process has been completed is zero. 
We shall refer to this point as the zero point. The radial distance of this point 
from the wall can be theoretically calculated for small p from Howard’s theory. 
We sought to measure this distance experimentally. 

To measure the radial distance of interest, a camera was fixed to the turn- 
table, so that the tank was viewed from the side. The circular cylindrical tank 
was placed inside a square-bottomed tank filled with water. One of the flat sides 
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of this tank was placed perpendicular to the line of sight of the camera, which was 
fixed at  a distance of about 60 cm from the side. The optical distortion of the sides 
of the circular tank was thereby essentially eliminated. 

The wire was placed at a certain angle (looking down from the vertical) with 
respect to the line of sight of the camera. The fluid was spun up an amount 
such that the part of the marker line containing the zero point ended up per- 
pendicular to the line of sight of the camera. This goal could only be achieved 
approximately. 

We looked at cases in which the azimuthal displacement of the point of zero 
vertical displacement was 45" and 90". Two runs were made for each angle. 
Figure 5, plate 3, shows the marker line after a 90" displacement. (The conditions 
for this case are summarized in table 2 as the conditions for figure 5 . )  The dashed 
line represents the horizontal plane containing the wire, which generated the 
marker. The figure shows the upward displacement near the wall. The line seems 
to curve back on itself because of our viewpoint. Of primary interest, however, 
is the distance from the wall to the zero point. 

n I @  L E ~  
Figure L (cm) h (cm) (rad/s) AR/R T, T ,  ( 6 )  T (8) (cm) (em) 

5 16.50 2.95 3.02 0.0244 91.2 18.1 15.8 0.76 0.97 
6 17.25 1.75 6.37 0.0060 69.8 11.8 10.2 0.56 0-82 
7 17.25 1.75 2.78 0.0130 106.0 63.2 39.6 0.87 1.01 
8 18.60 1.75 6.48 0.0304 37.9 12.9 9.6 0.54 0.60t 

-f In this case L = 18-60/2 cm to evaluate LEi, bccause we have a rigid top. 

TABLE 2 .  Values of parameters for experiments shown in figures 5 to 8. 

For these cases, the packing of the glass spheres was such that the perme- 
ability k had a value of 0.80 x em2. This value was obtained by observing the 
spin-up at several different speeds. With this value for E ,  and the other condi- 
tions given in table 2,  the values of the parameters for Howard's theory are 
6 = 0.18, T,/T, = 0.21, N = 2.46 x 10-2, and p = 0.13. 

For an angle of 45" an average radial distance of 1.36 cm, and for 90" an 
average distance of 1.49 cm was obtained for the two trials. Howard's theory 
predicts 1-52 cm as the distance between the wall and the zero point for the con- 
ditions that we used. The quantitative agreement between theory and experiment 
is therefore fairly good. It should be pointed out that the Ei layer, and the hpo 
layer, act in the same sense as far as the vertical displacement is concerned. 

The second prediction of Howard's theory which we tried to measure experi- 
mentally is the backward displacement or lag of the fluid azimuthally in the 

layer. Physically, the reason for this lag is clear. The fluid in the permeable 
medium and near the axis of rotation is thrown outward by the increased centri- 
fugal force due to the larger rotation rate. Because of the spreading of the radial 
lines, an outward divergence is generated in the permeable medium, and fluid 
is sucked down from the interior. Near the outer wall, however, the radial flow 
decreases outward and in a region of thickness O(h) the fluid converges outward. 
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In  the free fluid near the outer wall, there is an upward flow and the magnitude 
of the inward radial flow decreases toward the wall. The decreased inward radial 
flow means that particles of fluid acquire a smaller increase in angular velocity 
than do particles closer to the centre. Hence, fluid in this outer region will appear 
to lag behind the fluid closer to the centre. In  this case, the diffusive effect of the 
I& layer will be to increase the angular velocity of the fluid near the wall. Hence, 
the viscous EB layer will tend to decrease the effect of the essentially inviscid layer 
of thickness h/3#. As long as the latter layer is thicker than the Ea layer. as it is 
shortly after the initial instant, the lag should be as Howard has predicted. As the 
effects of the E* layer diffuse into the interior fluid, the effect of the h/B layer 
should be decreased. 

In our experiments, we were restricted to cases where the EP layer was at, least 
as thick as the hp% layer. Hence, our observations, which were made at the end of 
the spin-up time, reflected very strong effects of the E i  layer. As a result, we 
were able to provide only qualitative confirmation of Howard’s predictions. 

The qualitative difference in the azimuthal velocities of two flows, of which 
one satisfies Howard’s assumptions and the other does not, is shown by figure 6, 
plate 4, and figure 7, plate 5. The experimental conditions for these two flows 
are given in table 2. From these data, we note that for figure 6,6 = 0-10. Tp/q = 

0-17, p = 0-18, i.e. the three parameters for Howard’s prediction are consider- 
ably less than unity. The dashed line in the figure represents the final angle q5f 
of the dye line for the interior, as predicted by theory. The backward displace- 
ment or lag is evident in the dye line. For figure 7, the parametric values are 
6 = 0.10, Tp/T,= 0.60, /3 = 0.35. Hence, both TJT, and /3 are considerably 
larger than in the former case. In figure 7, there is no lag in the azimuthal velocity 
profile. 

For the two cases described above, the top surface was free. By introducing a 
rigid surface at  the top, we can cut down the thickness of the El layer. However, a 
rigid top also has the disadvantage of increasing the ratio T,/T,. By a suitable 
juggling of parameters it is possible to optimize the conditions required for 
the applicability of Howard’s theory. 

In figure 8, plate 6, we show a large lag in the azimuthal velocity produced in an 
experiment with parameters given in the last row of table 2. Here 6 = 0.094, 
T,/T,, = 0.34, p = 0.17. The two side-wall boundary layers are comparable in 
thickness. In  addition to the large lag, a small forward displacement is evident 
radially inward from the lag. 

The magnitude of the lags shown in experiments 6 and 8 is about 12 yo of 
the interior displacement of the dye line from its original position. According to 
Howard‘s theory, the additional lag in the hp8 layer should be about 50% 
of the displacemcnt of the interior line. 

The large quantitative difference between theory and experimerit appears to 
us to be due to the effect of the E* layer. However, the qualitative effect of the 
hp% layer is evident in figures 6 and 8. 

We are indebted to E. A. Spiegel for calling our attention to the need for these 
experiments. He and L. N. Howard have been most helpful in discussing various 
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aspects of the problem. The research was supported by the National Science 
Foundation, grant GA-1416. 
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r=O t > O  t+m 

FIGURE 2 .  The movement of the marker line as the tank is spun up. 

(Far ing  p. 240) 
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FIGURE 3. A typical markw line after spin-up has been completed. 

Plate 2 
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FIGURE 5. Lateral view of the side-wall boundary layer with /3 = 0.13 and T,/T, = 0.21. 
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FIGUEE 6. Vertical view of the side-wall boundary layer with p and T,/T, small 
(p = 0-18, T,/T, = 0.17). 
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FIGURE 7.  Vertical view of the side-wall boundary layer with and Tg/!l',, not small 
(p  = 0.35, T,/T, = 0.60). 
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FIGURE 8. Vertical view of the side-wall bonndn,ry lnyor using a rigid top with /J’ = 0.17 
and T,/T, = 0.34. 


